* Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: ++(x,g(y,z)) -> g(++(x,y),z) ++(x,nil()) -> x f(x,g(y,z)) -> g(f(x,y),z) f(x,nil()) -> g(nil(),x) max(g(g(g(x,y),z),u())) -> max'(max(g(g(x,y),z)),u()) max(g(g(nil(),x),y)) -> max'(x,y) mem(g(x,y),z) -> or(=(y,z),mem(x,z)) mem(nil(),y) -> false() null(g(x,y)) -> false() null(nil()) -> true() - Signature: {++/2,f/2,max/1,mem/2,null/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0,u/0} - Obligation: innermost runtime complexity wrt. defined symbols {++,f,max,mem,null} and constructors {=,false,g,max',nil ,or,true,u} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs ++#(x,g(y,z)) -> c_1(++#(x,y)) ++#(x,nil()) -> c_2() f#(x,g(y,z)) -> c_3(f#(x,y)) f#(x,nil()) -> c_4() max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) max#(g(g(nil(),x),y)) -> c_6() mem#(g(x,y),z) -> c_7(mem#(x,z)) mem#(nil(),y) -> c_8() null#(g(x,y)) -> c_9() null#(nil()) -> c_10() Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: ++#(x,g(y,z)) -> c_1(++#(x,y)) ++#(x,nil()) -> c_2() f#(x,g(y,z)) -> c_3(f#(x,y)) f#(x,nil()) -> c_4() max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) max#(g(g(nil(),x),y)) -> c_6() mem#(g(x,y),z) -> c_7(mem#(x,z)) mem#(nil(),y) -> c_8() null#(g(x,y)) -> c_9() null#(nil()) -> c_10() - Strict TRS: ++(x,g(y,z)) -> g(++(x,y),z) ++(x,nil()) -> x f(x,g(y,z)) -> g(f(x,y),z) f(x,nil()) -> g(nil(),x) max(g(g(g(x,y),z),u())) -> max'(max(g(g(x,y),z)),u()) max(g(g(nil(),x),y)) -> max'(x,y) mem(g(x,y),z) -> or(=(y,z),mem(x,z)) mem(nil(),y) -> false() null(g(x,y)) -> false() null(nil()) -> true() - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: ++#(x,g(y,z)) -> c_1(++#(x,y)) ++#(x,nil()) -> c_2() f#(x,g(y,z)) -> c_3(f#(x,y)) f#(x,nil()) -> c_4() max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) max#(g(g(nil(),x),y)) -> c_6() mem#(g(x,y),z) -> c_7(mem#(x,z)) mem#(nil(),y) -> c_8() null#(g(x,y)) -> c_9() null#(nil()) -> c_10() * Step 3: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: ++#(x,g(y,z)) -> c_1(++#(x,y)) ++#(x,nil()) -> c_2() f#(x,g(y,z)) -> c_3(f#(x,y)) f#(x,nil()) -> c_4() max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) max#(g(g(nil(),x),y)) -> c_6() mem#(g(x,y),z) -> c_7(mem#(x,z)) mem#(nil(),y) -> c_8() null#(g(x,y)) -> c_9() null#(nil()) -> c_10() - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,4,6,8,9,10} by application of Pre({2,4,6,8,9,10}) = {1,3,5,7}. Here rules are labelled as follows: 1: ++#(x,g(y,z)) -> c_1(++#(x,y)) 2: ++#(x,nil()) -> c_2() 3: f#(x,g(y,z)) -> c_3(f#(x,y)) 4: f#(x,nil()) -> c_4() 5: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) 6: max#(g(g(nil(),x),y)) -> c_6() 7: mem#(g(x,y),z) -> c_7(mem#(x,z)) 8: mem#(nil(),y) -> c_8() 9: null#(g(x,y)) -> c_9() 10: null#(nil()) -> c_10() * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: ++#(x,g(y,z)) -> c_1(++#(x,y)) f#(x,g(y,z)) -> c_3(f#(x,y)) max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) mem#(g(x,y),z) -> c_7(mem#(x,z)) - Weak DPs: ++#(x,nil()) -> c_2() f#(x,nil()) -> c_4() max#(g(g(nil(),x),y)) -> c_6() mem#(nil(),y) -> c_8() null#(g(x,y)) -> c_9() null#(nil()) -> c_10() - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:++#(x,g(y,z)) -> c_1(++#(x,y)) -->_1 ++#(x,nil()) -> c_2():5 -->_1 ++#(x,g(y,z)) -> c_1(++#(x,y)):1 2:S:f#(x,g(y,z)) -> c_3(f#(x,y)) -->_1 f#(x,nil()) -> c_4():6 -->_1 f#(x,g(y,z)) -> c_3(f#(x,y)):2 3:S:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) -->_1 max#(g(g(nil(),x),y)) -> c_6():7 -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):3 4:S:mem#(g(x,y),z) -> c_7(mem#(x,z)) -->_1 mem#(nil(),y) -> c_8():8 -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):4 5:W:++#(x,nil()) -> c_2() 6:W:f#(x,nil()) -> c_4() 7:W:max#(g(g(nil(),x),y)) -> c_6() 8:W:mem#(nil(),y) -> c_8() 9:W:null#(g(x,y)) -> c_9() 10:W:null#(nil()) -> c_10() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 10: null#(nil()) -> c_10() 9: null#(g(x,y)) -> c_9() 8: mem#(nil(),y) -> c_8() 7: max#(g(g(nil(),x),y)) -> c_6() 6: f#(x,nil()) -> c_4() 5: ++#(x,nil()) -> c_2() * Step 5: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: ++#(x,g(y,z)) -> c_1(++#(x,y)) f#(x,g(y,z)) -> c_3(f#(x,y)) max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) mem#(g(x,y),z) -> c_7(mem#(x,z)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: ++#(x,g(y,z)) -> c_1(++#(x,y)) - Weak DPs: f#(x,g(y,z)) -> c_3(f#(x,y)) max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) mem#(g(x,y),z) -> c_7(mem#(x,z)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g ,max',nil,or,true,u} Problem (S) - Strict DPs: f#(x,g(y,z)) -> c_3(f#(x,y)) max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) mem#(g(x,y),z) -> c_7(mem#(x,z)) - Weak DPs: ++#(x,g(y,z)) -> c_1(++#(x,y)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g ,max',nil,or,true,u} ** Step 5.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: ++#(x,g(y,z)) -> c_1(++#(x,y)) - Weak DPs: f#(x,g(y,z)) -> c_3(f#(x,y)) max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) mem#(g(x,y),z) -> c_7(mem#(x,z)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:++#(x,g(y,z)) -> c_1(++#(x,y)) -->_1 ++#(x,g(y,z)) -> c_1(++#(x,y)):1 2:W:f#(x,g(y,z)) -> c_3(f#(x,y)) -->_1 f#(x,g(y,z)) -> c_3(f#(x,y)):2 3:W:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):3 4:W:mem#(g(x,y),z) -> c_7(mem#(x,z)) -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: mem#(g(x,y),z) -> c_7(mem#(x,z)) 3: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) 2: f#(x,g(y,z)) -> c_3(f#(x,y)) ** Step 5.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: ++#(x,g(y,z)) -> c_1(++#(x,y)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: ++#(x,g(y,z)) -> c_1(++#(x,y)) The strictly oriented rules are moved into the weak component. *** Step 5.a:2.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: ++#(x,g(y,z)) -> c_1(++#(x,y)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1} Following symbols are considered usable: {++#,f#,max#,mem#,null#} TcT has computed the following interpretation: p(++) = [0] p(=) = [0] p(f) = [1] x1 + [1] x2 + [1] p(false) = [2] p(g) = [1] x1 + [8] p(max) = [1] p(max') = [0] p(mem) = [2] p(nil) = [2] p(null) = [1] x1 + [1] p(or) = [4] p(true) = [1] p(u) = [0] p(++#) = [2] x1 + [2] x2 + [0] p(f#) = [2] x2 + [1] p(max#) = [8] x1 + [1] p(mem#) = [2] x1 + [8] x2 + [0] p(null#) = [8] x1 + [1] p(c_1) = [1] x1 + [15] p(c_2) = [0] p(c_3) = [1] x1 + [1] p(c_4) = [0] p(c_5) = [1] x1 + [0] p(c_6) = [1] p(c_7) = [1] x1 + [1] p(c_8) = [1] p(c_9) = [0] p(c_10) = [0] Following rules are strictly oriented: ++#(x,g(y,z)) = [2] x + [2] y + [16] > [2] x + [2] y + [15] = c_1(++#(x,y)) Following rules are (at-least) weakly oriented: *** Step 5.a:2.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: ++#(x,g(y,z)) -> c_1(++#(x,y)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 5.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: ++#(x,g(y,z)) -> c_1(++#(x,y)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:++#(x,g(y,z)) -> c_1(++#(x,y)) -->_1 ++#(x,g(y,z)) -> c_1(++#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: ++#(x,g(y,z)) -> c_1(++#(x,y)) *** Step 5.a:2.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,g(y,z)) -> c_3(f#(x,y)) max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) mem#(g(x,y),z) -> c_7(mem#(x,z)) - Weak DPs: ++#(x,g(y,z)) -> c_1(++#(x,y)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(x,g(y,z)) -> c_3(f#(x,y)) -->_1 f#(x,g(y,z)) -> c_3(f#(x,y)):1 2:S:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):2 3:S:mem#(g(x,y),z) -> c_7(mem#(x,z)) -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):3 4:W:++#(x,g(y,z)) -> c_1(++#(x,y)) -->_1 ++#(x,g(y,z)) -> c_1(++#(x,y)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: ++#(x,g(y,z)) -> c_1(++#(x,y)) ** Step 5.b:2: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,g(y,z)) -> c_3(f#(x,y)) max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) mem#(g(x,y),z) -> c_7(mem#(x,z)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: f#(x,g(y,z)) -> c_3(f#(x,y)) - Weak DPs: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) mem#(g(x,y),z) -> c_7(mem#(x,z)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g ,max',nil,or,true,u} Problem (S) - Strict DPs: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) mem#(g(x,y),z) -> c_7(mem#(x,z)) - Weak DPs: f#(x,g(y,z)) -> c_3(f#(x,y)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g ,max',nil,or,true,u} *** Step 5.b:2.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,g(y,z)) -> c_3(f#(x,y)) - Weak DPs: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) mem#(g(x,y),z) -> c_7(mem#(x,z)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(x,g(y,z)) -> c_3(f#(x,y)) -->_1 f#(x,g(y,z)) -> c_3(f#(x,y)):1 2:W:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):2 3:W:mem#(g(x,y),z) -> c_7(mem#(x,z)) -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: mem#(g(x,y),z) -> c_7(mem#(x,z)) 2: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) *** Step 5.b:2.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,g(y,z)) -> c_3(f#(x,y)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: f#(x,g(y,z)) -> c_3(f#(x,y)) The strictly oriented rules are moved into the weak component. **** Step 5.b:2.a:2.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,g(y,z)) -> c_3(f#(x,y)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1} Following symbols are considered usable: {++#,f#,max#,mem#,null#} TcT has computed the following interpretation: p(++) = [0] p(=) = [1] x1 + [1] x2 + [0] p(f) = [0] p(false) = [0] p(g) = [1] x1 + [1] p(max) = [8] p(max') = [1] p(mem) = [1] x1 + [1] p(nil) = [0] p(null) = [1] x1 + [1] p(or) = [1] x1 + [1] p(true) = [0] p(u) = [1] p(++#) = [1] x1 + [1] x2 + [1] p(f#) = [1] x1 + [8] x2 + [1] p(max#) = [1] x1 + [1] p(mem#) = [1] p(null#) = [0] p(c_1) = [1] x1 + [2] p(c_2) = [1] p(c_3) = [1] x1 + [5] p(c_4) = [1] p(c_5) = [1] p(c_6) = [0] p(c_7) = [1] x1 + [2] p(c_8) = [2] p(c_9) = [2] p(c_10) = [8] Following rules are strictly oriented: f#(x,g(y,z)) = [1] x + [8] y + [9] > [1] x + [8] y + [6] = c_3(f#(x,y)) Following rules are (at-least) weakly oriented: **** Step 5.b:2.a:2.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(x,g(y,z)) -> c_3(f#(x,y)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.b:2.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(x,g(y,z)) -> c_3(f#(x,y)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:f#(x,g(y,z)) -> c_3(f#(x,y)) -->_1 f#(x,g(y,z)) -> c_3(f#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: f#(x,g(y,z)) -> c_3(f#(x,y)) **** Step 5.b:2.a:2.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 5.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) mem#(g(x,y),z) -> c_7(mem#(x,z)) - Weak DPs: f#(x,g(y,z)) -> c_3(f#(x,y)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):1 2:S:mem#(g(x,y),z) -> c_7(mem#(x,z)) -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):2 3:W:f#(x,g(y,z)) -> c_3(f#(x,y)) -->_1 f#(x,g(y,z)) -> c_3(f#(x,y)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: f#(x,g(y,z)) -> c_3(f#(x,y)) *** Step 5.b:2.b:2: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) mem#(g(x,y),z) -> c_7(mem#(x,z)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) - Weak DPs: mem#(g(x,y),z) -> c_7(mem#(x,z)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g ,max',nil,or,true,u} Problem (S) - Strict DPs: mem#(g(x,y),z) -> c_7(mem#(x,z)) - Weak DPs: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g ,max',nil,or,true,u} **** Step 5.b:2.b:2.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) - Weak DPs: mem#(g(x,y),z) -> c_7(mem#(x,z)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):1 2:W:mem#(g(x,y),z) -> c_7(mem#(x,z)) -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: mem#(g(x,y),z) -> c_7(mem#(x,z)) **** Step 5.b:2.b:2.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) The strictly oriented rules are moved into the weak component. ***** Step 5.b:2.b:2.a:2.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: {++#,f#,max#,mem#,null#} TcT has computed the following interpretation: p(++) = [1] x2 + [0] p(=) = [0] p(f) = [1] x1 + [8] x2 + [4] p(false) = [1] p(g) = [1] x1 + [1] x2 + [0] p(max) = [1] x1 + [4] p(max') = [1] x2 + [1] p(mem) = [2] x2 + [0] p(nil) = [0] p(null) = [0] p(or) = [0] p(true) = [4] p(u) = [2] p(++#) = [1] x1 + [0] p(f#) = [1] x2 + [2] p(max#) = [8] x1 + [4] p(mem#) = [8] x1 + [1] x2 + [1] p(null#) = [2] p(c_1) = [2] p(c_2) = [1] p(c_3) = [0] p(c_4) = [2] p(c_5) = [1] x1 + [6] p(c_6) = [0] p(c_7) = [2] p(c_8) = [0] p(c_9) = [1] p(c_10) = [1] Following rules are strictly oriented: max#(g(g(g(x,y),z),u())) = [8] x + [8] y + [8] z + [20] > [8] x + [8] y + [8] z + [10] = c_5(max#(g(g(x,y),z))) Following rules are (at-least) weakly oriented: ***** Step 5.b:2.b:2.a:2.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ***** Step 5.b:2.b:2.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) ***** Step 5.b:2.b:2.a:2.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). **** Step 5.b:2.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mem#(g(x,y),z) -> c_7(mem#(x,z)) - Weak DPs: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:mem#(g(x,y),z) -> c_7(mem#(x,z)) -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):1 2:W:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))) **** Step 5.b:2.b:2.b:2: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mem#(g(x,y),z) -> c_7(mem#(x,z)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: mem#(g(x,y),z) -> c_7(mem#(x,z)) The strictly oriented rules are moved into the weak component. ***** Step 5.b:2.b:2.b:2.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mem#(g(x,y),z) -> c_7(mem#(x,z)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_7) = {1} Following symbols are considered usable: {++#,f#,max#,mem#,null#} TcT has computed the following interpretation: p(++) = [0] p(=) = [1] x1 + [1] x2 + [0] p(f) = [0] p(false) = [0] p(g) = [1] x1 + [1] x2 + [4] p(max) = [0] p(max') = [1] x1 + [1] x2 + [0] p(mem) = [0] p(nil) = [0] p(null) = [0] p(or) = [1] x1 + [1] x2 + [0] p(true) = [0] p(u) = [0] p(++#) = [1] x1 + [8] x2 + [0] p(f#) = [8] p(max#) = [8] x1 + [1] p(mem#) = [4] x1 + [8] p(null#) = [2] x1 + [1] p(c_1) = [4] x1 + [1] p(c_2) = [1] p(c_3) = [2] x1 + [1] p(c_4) = [0] p(c_5) = [4] x1 + [8] p(c_6) = [1] p(c_7) = [1] x1 + [8] p(c_8) = [0] p(c_9) = [1] p(c_10) = [0] Following rules are strictly oriented: mem#(g(x,y),z) = [4] x + [4] y + [24] > [4] x + [16] = c_7(mem#(x,z)) Following rules are (at-least) weakly oriented: ***** Step 5.b:2.b:2.b:2.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: mem#(g(x,y),z) -> c_7(mem#(x,z)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ***** Step 5.b:2.b:2.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: mem#(g(x,y),z) -> c_7(mem#(x,z)) - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:mem#(g(x,y),z) -> c_7(mem#(x,z)) -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: mem#(g(x,y),z) -> c_7(mem#(x,z)) ***** Step 5.b:2.b:2.b:2.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0 ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max' ,nil,or,true,u} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))