* Step 1: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            ++(x,g(y,z)) -> g(++(x,y),z)
            ++(x,nil()) -> x
            f(x,g(y,z)) -> g(f(x,y),z)
            f(x,nil()) -> g(nil(),x)
            max(g(g(g(x,y),z),u())) -> max'(max(g(g(x,y),z)),u())
            max(g(g(nil(),x),y)) -> max'(x,y)
            mem(g(x,y),z) -> or(=(y,z),mem(x,z))
            mem(nil(),y) -> false()
            null(g(x,y)) -> false()
            null(nil()) -> true()
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0,u/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++,f,max,mem,null} and constructors {=,false,g,max',nil
            ,or,true,u}
    + Applied Processor:
        DependencyPairs {dpKind_ = WIDP}
    + Details:
        We add the following weak innermost dependency pairs:
        
        Strict DPs
          ++#(x,g(y,z)) -> c_1(++#(x,y))
          ++#(x,nil()) -> c_2()
          f#(x,g(y,z)) -> c_3(f#(x,y))
          f#(x,nil()) -> c_4()
          max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
          max#(g(g(nil(),x),y)) -> c_6()
          mem#(g(x,y),z) -> c_7(mem#(x,z))
          mem#(nil(),y) -> c_8()
          null#(g(x,y)) -> c_9()
          null#(nil()) -> c_10()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ++#(x,g(y,z)) -> c_1(++#(x,y))
            ++#(x,nil()) -> c_2()
            f#(x,g(y,z)) -> c_3(f#(x,y))
            f#(x,nil()) -> c_4()
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
            max#(g(g(nil(),x),y)) -> c_6()
            mem#(g(x,y),z) -> c_7(mem#(x,z))
            mem#(nil(),y) -> c_8()
            null#(g(x,y)) -> c_9()
            null#(nil()) -> c_10()
        - Strict TRS:
            ++(x,g(y,z)) -> g(++(x,y),z)
            ++(x,nil()) -> x
            f(x,g(y,z)) -> g(f(x,y),z)
            f(x,nil()) -> g(nil(),x)
            max(g(g(g(x,y),z),u())) -> max'(max(g(g(x,y),z)),u())
            max(g(g(nil(),x),y)) -> max'(x,y)
            mem(g(x,y),z) -> or(=(y,z),mem(x,z))
            mem(nil(),y) -> false()
            null(g(x,y)) -> false()
            null(nil()) -> true()
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          ++#(x,g(y,z)) -> c_1(++#(x,y))
          ++#(x,nil()) -> c_2()
          f#(x,g(y,z)) -> c_3(f#(x,y))
          f#(x,nil()) -> c_4()
          max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
          max#(g(g(nil(),x),y)) -> c_6()
          mem#(g(x,y),z) -> c_7(mem#(x,z))
          mem#(nil(),y) -> c_8()
          null#(g(x,y)) -> c_9()
          null#(nil()) -> c_10()
* Step 3: PredecessorEstimation WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ++#(x,g(y,z)) -> c_1(++#(x,y))
            ++#(x,nil()) -> c_2()
            f#(x,g(y,z)) -> c_3(f#(x,y))
            f#(x,nil()) -> c_4()
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
            max#(g(g(nil(),x),y)) -> c_6()
            mem#(g(x,y),z) -> c_7(mem#(x,z))
            mem#(nil(),y) -> c_8()
            null#(g(x,y)) -> c_9()
            null#(nil()) -> c_10()
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,4,6,8,9,10}
        by application of
          Pre({2,4,6,8,9,10}) = {1,3,5,7}.
        Here rules are labelled as follows:
          1: ++#(x,g(y,z)) -> c_1(++#(x,y))
          2: ++#(x,nil()) -> c_2()
          3: f#(x,g(y,z)) -> c_3(f#(x,y))
          4: f#(x,nil()) -> c_4()
          5: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
          6: max#(g(g(nil(),x),y)) -> c_6()
          7: mem#(g(x,y),z) -> c_7(mem#(x,z))
          8: mem#(nil(),y) -> c_8()
          9: null#(g(x,y)) -> c_9()
          10: null#(nil()) -> c_10()
* Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ++#(x,g(y,z)) -> c_1(++#(x,y))
            f#(x,g(y,z)) -> c_3(f#(x,y))
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Weak DPs:
            ++#(x,nil()) -> c_2()
            f#(x,nil()) -> c_4()
            max#(g(g(nil(),x),y)) -> c_6()
            mem#(nil(),y) -> c_8()
            null#(g(x,y)) -> c_9()
            null#(nil()) -> c_10()
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:++#(x,g(y,z)) -> c_1(++#(x,y))
             -->_1 ++#(x,nil()) -> c_2():5
             -->_1 ++#(x,g(y,z)) -> c_1(++#(x,y)):1
          
          2:S:f#(x,g(y,z)) -> c_3(f#(x,y))
             -->_1 f#(x,nil()) -> c_4():6
             -->_1 f#(x,g(y,z)) -> c_3(f#(x,y)):2
          
          3:S:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
             -->_1 max#(g(g(nil(),x),y)) -> c_6():7
             -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):3
          
          4:S:mem#(g(x,y),z) -> c_7(mem#(x,z))
             -->_1 mem#(nil(),y) -> c_8():8
             -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):4
          
          5:W:++#(x,nil()) -> c_2()
             
          
          6:W:f#(x,nil()) -> c_4()
             
          
          7:W:max#(g(g(nil(),x),y)) -> c_6()
             
          
          8:W:mem#(nil(),y) -> c_8()
             
          
          9:W:null#(g(x,y)) -> c_9()
             
          
          10:W:null#(nil()) -> c_10()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: null#(nil()) -> c_10()
          9: null#(g(x,y)) -> c_9()
          8: mem#(nil(),y) -> c_8()
          7: max#(g(g(nil(),x),y)) -> c_6()
          6: f#(x,nil()) -> c_4()
          5: ++#(x,nil()) -> c_2()
* Step 5: Decompose WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ++#(x,g(y,z)) -> c_1(++#(x,y))
            f#(x,g(y,z)) -> c_3(f#(x,y))
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              ++#(x,g(y,z)) -> c_1(++#(x,y))
          - Weak DPs:
              f#(x,g(y,z)) -> c_3(f#(x,y))
              max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
              mem#(g(x,y),z) -> c_7(mem#(x,z))
          - Signature:
              {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
              ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g
              ,max',nil,or,true,u}
        
        Problem (S)
          - Strict DPs:
              f#(x,g(y,z)) -> c_3(f#(x,y))
              max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
              mem#(g(x,y),z) -> c_7(mem#(x,z))
          - Weak DPs:
              ++#(x,g(y,z)) -> c_1(++#(x,y))
          - Signature:
              {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
              ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g
              ,max',nil,or,true,u}
** Step 5.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ++#(x,g(y,z)) -> c_1(++#(x,y))
        - Weak DPs:
            f#(x,g(y,z)) -> c_3(f#(x,y))
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:++#(x,g(y,z)) -> c_1(++#(x,y))
             -->_1 ++#(x,g(y,z)) -> c_1(++#(x,y)):1
          
          2:W:f#(x,g(y,z)) -> c_3(f#(x,y))
             -->_1 f#(x,g(y,z)) -> c_3(f#(x,y)):2
          
          3:W:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
             -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):3
          
          4:W:mem#(g(x,y),z) -> c_7(mem#(x,z))
             -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: mem#(g(x,y),z) -> c_7(mem#(x,z))
          3: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
          2: f#(x,g(y,z)) -> c_3(f#(x,y))
** Step 5.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ++#(x,g(y,z)) -> c_1(++#(x,y))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: ++#(x,g(y,z)) -> c_1(++#(x,y))
          
        The strictly oriented rules are moved into the weak component.
*** Step 5.a:2.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ++#(x,g(y,z)) -> c_1(++#(x,y))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1}
        
        Following symbols are considered usable:
          {++#,f#,max#,mem#,null#}
        TcT has computed the following interpretation:
             p(++) = [0]                  
              p(=) = [0]                  
              p(f) = [1] x1 + [1] x2 + [1]
          p(false) = [2]                  
              p(g) = [1] x1 + [8]         
            p(max) = [1]                  
           p(max') = [0]                  
            p(mem) = [2]                  
            p(nil) = [2]                  
           p(null) = [1] x1 + [1]         
             p(or) = [4]                  
           p(true) = [1]                  
              p(u) = [0]                  
            p(++#) = [2] x1 + [2] x2 + [0]
             p(f#) = [2] x2 + [1]         
           p(max#) = [8] x1 + [1]         
           p(mem#) = [2] x1 + [8] x2 + [0]
          p(null#) = [8] x1 + [1]         
            p(c_1) = [1] x1 + [15]        
            p(c_2) = [0]                  
            p(c_3) = [1] x1 + [1]         
            p(c_4) = [0]                  
            p(c_5) = [1] x1 + [0]         
            p(c_6) = [1]                  
            p(c_7) = [1] x1 + [1]         
            p(c_8) = [1]                  
            p(c_9) = [0]                  
           p(c_10) = [0]                  
        
        Following rules are strictly oriented:
        ++#(x,g(y,z)) = [2] x + [2] y + [16]
                      > [2] x + [2] y + [15]
                      = c_1(++#(x,y))       
        
        
        Following rules are (at-least) weakly oriented:
        
*** Step 5.a:2.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            ++#(x,g(y,z)) -> c_1(++#(x,y))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 5.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            ++#(x,g(y,z)) -> c_1(++#(x,y))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:++#(x,g(y,z)) -> c_1(++#(x,y))
             -->_1 ++#(x,g(y,z)) -> c_1(++#(x,y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: ++#(x,g(y,z)) -> c_1(++#(x,y))
*** Step 5.a:2.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(x,g(y,z)) -> c_3(f#(x,y))
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Weak DPs:
            ++#(x,g(y,z)) -> c_1(++#(x,y))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:f#(x,g(y,z)) -> c_3(f#(x,y))
             -->_1 f#(x,g(y,z)) -> c_3(f#(x,y)):1
          
          2:S:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
             -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):2
          
          3:S:mem#(g(x,y),z) -> c_7(mem#(x,z))
             -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):3
          
          4:W:++#(x,g(y,z)) -> c_1(++#(x,y))
             -->_1 ++#(x,g(y,z)) -> c_1(++#(x,y)):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: ++#(x,g(y,z)) -> c_1(++#(x,y))
** Step 5.b:2: Decompose WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(x,g(y,z)) -> c_3(f#(x,y))
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              f#(x,g(y,z)) -> c_3(f#(x,y))
          - Weak DPs:
              max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
              mem#(g(x,y),z) -> c_7(mem#(x,z))
          - Signature:
              {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
              ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g
              ,max',nil,or,true,u}
        
        Problem (S)
          - Strict DPs:
              max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
              mem#(g(x,y),z) -> c_7(mem#(x,z))
          - Weak DPs:
              f#(x,g(y,z)) -> c_3(f#(x,y))
          - Signature:
              {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
              ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g
              ,max',nil,or,true,u}
*** Step 5.b:2.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(x,g(y,z)) -> c_3(f#(x,y))
        - Weak DPs:
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:f#(x,g(y,z)) -> c_3(f#(x,y))
             -->_1 f#(x,g(y,z)) -> c_3(f#(x,y)):1
          
          2:W:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
             -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):2
          
          3:W:mem#(g(x,y),z) -> c_7(mem#(x,z))
             -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: mem#(g(x,y),z) -> c_7(mem#(x,z))
          2: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
*** Step 5.b:2.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(x,g(y,z)) -> c_3(f#(x,y))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: f#(x,g(y,z)) -> c_3(f#(x,y))
          
        The strictly oriented rules are moved into the weak component.
**** Step 5.b:2.a:2.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(x,g(y,z)) -> c_3(f#(x,y))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_3) = {1}
        
        Following symbols are considered usable:
          {++#,f#,max#,mem#,null#}
        TcT has computed the following interpretation:
             p(++) = [0]                  
              p(=) = [1] x1 + [1] x2 + [0]
              p(f) = [0]                  
          p(false) = [0]                  
              p(g) = [1] x1 + [1]         
            p(max) = [8]                  
           p(max') = [1]                  
            p(mem) = [1] x1 + [1]         
            p(nil) = [0]                  
           p(null) = [1] x1 + [1]         
             p(or) = [1] x1 + [1]         
           p(true) = [0]                  
              p(u) = [1]                  
            p(++#) = [1] x1 + [1] x2 + [1]
             p(f#) = [1] x1 + [8] x2 + [1]
           p(max#) = [1] x1 + [1]         
           p(mem#) = [1]                  
          p(null#) = [0]                  
            p(c_1) = [1] x1 + [2]         
            p(c_2) = [1]                  
            p(c_3) = [1] x1 + [5]         
            p(c_4) = [1]                  
            p(c_5) = [1]                  
            p(c_6) = [0]                  
            p(c_7) = [1] x1 + [2]         
            p(c_8) = [2]                  
            p(c_9) = [2]                  
           p(c_10) = [8]                  
        
        Following rules are strictly oriented:
        f#(x,g(y,z)) = [1] x + [8] y + [9]
                     > [1] x + [8] y + [6]
                     = c_3(f#(x,y))       
        
        
        Following rules are (at-least) weakly oriented:
        
**** Step 5.b:2.a:2.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            f#(x,g(y,z)) -> c_3(f#(x,y))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 5.b:2.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            f#(x,g(y,z)) -> c_3(f#(x,y))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:f#(x,g(y,z)) -> c_3(f#(x,y))
             -->_1 f#(x,g(y,z)) -> c_3(f#(x,y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: f#(x,g(y,z)) -> c_3(f#(x,y))
**** Step 5.b:2.a:2.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 5.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Weak DPs:
            f#(x,g(y,z)) -> c_3(f#(x,y))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
             -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):1
          
          2:S:mem#(g(x,y),z) -> c_7(mem#(x,z))
             -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):2
          
          3:W:f#(x,g(y,z)) -> c_3(f#(x,y))
             -->_1 f#(x,g(y,z)) -> c_3(f#(x,y)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: f#(x,g(y,z)) -> c_3(f#(x,y))
*** Step 5.b:2.b:2: Decompose WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
          - Weak DPs:
              mem#(g(x,y),z) -> c_7(mem#(x,z))
          - Signature:
              {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
              ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g
              ,max',nil,or,true,u}
        
        Problem (S)
          - Strict DPs:
              mem#(g(x,y),z) -> c_7(mem#(x,z))
          - Weak DPs:
              max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
          - Signature:
              {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
              ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g
              ,max',nil,or,true,u}
**** Step 5.b:2.b:2.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
        - Weak DPs:
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
             -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):1
          
          2:W:mem#(g(x,y),z) -> c_7(mem#(x,z))
             -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: mem#(g(x,y),z) -> c_7(mem#(x,z))
**** Step 5.b:2.b:2.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
          
        The strictly oriented rules are moved into the weak component.
***** Step 5.b:2.b:2.a:2.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_5) = {1}
        
        Following symbols are considered usable:
          {++#,f#,max#,mem#,null#}
        TcT has computed the following interpretation:
             p(++) = [1] x2 + [0]         
              p(=) = [0]                  
              p(f) = [1] x1 + [8] x2 + [4]
          p(false) = [1]                  
              p(g) = [1] x1 + [1] x2 + [0]
            p(max) = [1] x1 + [4]         
           p(max') = [1] x2 + [1]         
            p(mem) = [2] x2 + [0]         
            p(nil) = [0]                  
           p(null) = [0]                  
             p(or) = [0]                  
           p(true) = [4]                  
              p(u) = [2]                  
            p(++#) = [1] x1 + [0]         
             p(f#) = [1] x2 + [2]         
           p(max#) = [8] x1 + [4]         
           p(mem#) = [8] x1 + [1] x2 + [1]
          p(null#) = [2]                  
            p(c_1) = [2]                  
            p(c_2) = [1]                  
            p(c_3) = [0]                  
            p(c_4) = [2]                  
            p(c_5) = [1] x1 + [6]         
            p(c_6) = [0]                  
            p(c_7) = [2]                  
            p(c_8) = [0]                  
            p(c_9) = [1]                  
           p(c_10) = [1]                  
        
        Following rules are strictly oriented:
        max#(g(g(g(x,y),z),u())) = [8] x + [8] y + [8] z + [20]
                                 > [8] x + [8] y + [8] z + [10]
                                 = c_5(max#(g(g(x,y),z)))      
        
        
        Following rules are (at-least) weakly oriented:
        
***** Step 5.b:2.b:2.a:2.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 5.b:2.b:2.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
             -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
***** Step 5.b:2.b:2.a:2.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 5.b:2.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Weak DPs:
            max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:mem#(g(x,y),z) -> c_7(mem#(x,z))
             -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):1
          
          2:W:max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
             -->_1 max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z))):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: max#(g(g(g(x,y),z),u())) -> c_5(max#(g(g(x,y),z)))
**** Step 5.b:2.b:2.b:2: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: mem#(g(x,y),z) -> c_7(mem#(x,z))
          
        The strictly oriented rules are moved into the weak component.
***** Step 5.b:2.b:2.b:2.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_7) = {1}
        
        Following symbols are considered usable:
          {++#,f#,max#,mem#,null#}
        TcT has computed the following interpretation:
             p(++) = [0]                  
              p(=) = [1] x1 + [1] x2 + [0]
              p(f) = [0]                  
          p(false) = [0]                  
              p(g) = [1] x1 + [1] x2 + [4]
            p(max) = [0]                  
           p(max') = [1] x1 + [1] x2 + [0]
            p(mem) = [0]                  
            p(nil) = [0]                  
           p(null) = [0]                  
             p(or) = [1] x1 + [1] x2 + [0]
           p(true) = [0]                  
              p(u) = [0]                  
            p(++#) = [1] x1 + [8] x2 + [0]
             p(f#) = [8]                  
           p(max#) = [8] x1 + [1]         
           p(mem#) = [4] x1 + [8]         
          p(null#) = [2] x1 + [1]         
            p(c_1) = [4] x1 + [1]         
            p(c_2) = [1]                  
            p(c_3) = [2] x1 + [1]         
            p(c_4) = [0]                  
            p(c_5) = [4] x1 + [8]         
            p(c_6) = [1]                  
            p(c_7) = [1] x1 + [8]         
            p(c_8) = [0]                  
            p(c_9) = [1]                  
           p(c_10) = [0]                  
        
        Following rules are strictly oriented:
        mem#(g(x,y),z) = [4] x + [4] y + [24]
                       > [4] x + [16]        
                       = c_7(mem#(x,z))      
        
        
        Following rules are (at-least) weakly oriented:
        
***** Step 5.b:2.b:2.b:2.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 5.b:2.b:2.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            mem#(g(x,y),z) -> c_7(mem#(x,z))
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:mem#(g(x,y),z) -> c_7(mem#(x,z))
             -->_1 mem#(g(x,y),z) -> c_7(mem#(x,z)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: mem#(g(x,y),z) -> c_7(mem#(x,z))
***** Step 5.b:2.b:2.b:2.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {++/2,f/2,max/1,mem/2,null/1,++#/2,f#/2,max#/1,mem#/2,null#/1} / {=/2,false/0,g/2,max'/2,nil/0,or/2,true/0
            ,u/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++#,f#,max#,mem#,null#} and constructors {=,false,g,max'
            ,nil,or,true,u}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))